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A B S T R A C T

Recent analysis concerning the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)- angiotensin
converting enzyme (ACE) receptor interaction in enterocytes, the definition of gut-lung axis, as well as the
molecular basis of sialic acid-related dual recognition concept in gastrointestinal SARS-CoV-2 infection, have
brought a new perspective to potential therapeutic targets. In this review evolving research and clinical data on
gastrointestinal SARS-CoV-2 infection are discussed in the context of viral fusion and entry mechanisms, focusing
on the different triggers used by coronaviruses. Furthermore, it is emphasized that the viral spike protein is
prevented from binding gangliosides, which are composed of a glycosphingolipid with one or more sialic acids,
in the presence of chloroquine or hydroxychloroquine. In gastrointestinal SARS-CoV-2 infection the efficiency of
these repositioned drugs is debated.

1. Introduction

Human coronaviruses (hCoVs) are a large family of pathogenic
enveloped viruses that carry a single strand of RNA. Infection with
these viruses generally results in mild to moderate respiratory system
disorders, which can also be fatal in some vulnerable individuals.
(Graham et al., 2013). To date, six hCoV strains have been identified
and classified into four groups. Among these, one of the group B β-
CoVs, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is
the microorganism responsible for the 2019 pandemic coronavirus
disease (COVID-19) (Huang et al., 2015). Although the transmission via
respiratory tract is the principal exposure route for this disease, the
faecal-oral route of transmission should not be ignored. Many hy-
potheses have been proposed regarding why COVID-19 causes sig-
nificant gastrointestinal symptoms. Firstly, recent analysis revealed that
angiotensin-converting enzyme-2 (ACE2) despite being highly ex-
pressed in alveolar cells in the lung, it is also expressed on a large scale
in the glandular epithelial cells of gastrointestinal system. Thus, it is
accepted that interaction between SARS-CoV-2 and ACE2 may mediate
gastrointestinal symptoms (Liang et al., 2020; Zhang et al., 2020a).
Secondly, SARS-CoV-2 indirectly damages the gastrointestinal epithe-
lial cells via initiating a cascade of inflammatory reactions. The bac-
terial abundance of the gastrointestinal system reciprocally influences
the respiratory tract through the “gut-lung axis” (Budden et al., 2017;
Pan et al., 2020). The third option is that dual recognition of

gangliosides and ACE2 by the spike (S) protein of SARS-CoV-2 leads to
malabsorption, unstable gut secretion and hyperactive enteric motility
(Matrosovich et al., 2015; Zhang et al., 2020a). Recently, the presence
of mutual recognition systems by the use of sialic acid (SiA) and sugar
chains, between viruses and their host cells has focused interest on this
research area leading to the accumulation of knowledge in the field of
"sialoglycovirology." (Sriwilaijaroen and Suzuki, 2020). In this context,
receptor-related approaches for determination of the binding sites on
host and virus proteins will clarify the perspective in potentially drug
repurposing and developing new drug candidates for COVID-19.

2. Gastrointestinal SARS-CoV-2 infection

In a meta-analysis reviewing 60 different investigations, a total of
4243 cases had digestive system symptoms and this distribution cal-
culated as 17.6 % in average. In this series of patients, 48 % of the stool
specimens were RNA virus positive, although 70 % of them were taken
after the disappearance of virus from respiratory tract (Cheung et al.,
2020; Grassia et al., 2020). Nationwide data from China showed that
8.7 % of 1099 SARS-CoV-2 confirmed patients had gastrointestinal
symptoms (Guan et al., 2020). In another study, among the 651 cases
with COVID-19, the proportion of patients with gastrointestinal symp-
toms was found to be 11.4 %. Increased tendency to suffer from gas-
trointestinal symptoms among the patients with COVID-19 enhances
the risk of contamination in healthcare workers who treat the suspected
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COVID-19 patients with no presentation of either respiratory symptoms
or fever. Furthermore, the frequency of chronic hepatic disease was also
found to be elevated in COVID-19 patients who had digestive system
complaints (Jin et al., 2020). Patients who do not suffer from digestive
system symptoms were shown to have better prognosis and shorter
hospital stay than the cases with gastrointestinal symptoms (60 % vs.
34.3 %). This result arises from either the viral replication in the gas-
trointestinal system that promotes disease severity or the lack of the
characteristic respiratory symptoms at the early phases of the disease
(Pan et al., 2020). In patients identified as being positive for SARS-CoV-
2 RNA in faeces samples, the severity of illness was not found to be
related to the presence of the gastrointestinal complaints. Among these
patients, approximately 64 % were still positive for viral RNA in the
stool even after no viral RNA could be detected in the pharyngeal swabs
(Chen et al., 2020). Similarly, SARS-CoV-2 RNA was detected in faeces
of half of the patients (53.4 %). In these patients, virus was negative in
respiratory tract samples, -although 23 % of stool specimens -tested as
virus positive. These data demonstrate the threat posed by the presence
of infection in the gastrointestinal system, even after it has gone from
respiratory tract, due to the potential of the faecal-oral transmission
(Cipriano et al., 2020). However, the level of gastrointestinal symptoms
in severe -COVID-19 cases is greater compared to the non-severe cases.
In these cases, ACE2 and virus nucleocapsid protein and other viral
material are found in gastrointestinal epithelial cells, and can be iso-
lated from the stool samples (Fig. 1). Approximately in one third to half
of all patients, faecal PCR becomes positive, after 2–5 days than sputum
positivity and faecal virus excretion may persist after sputum excretion
for up to 11 days (Tian et al., 2020). Furthermore, Holshue et al. de-
monstrated the SARS-CoV-2 nucleic acid in stool samples of a patient
(Holshue et al., 2020). Consequently, the digestive system can also be

confirmed as a potential entry track for the virus infection by single cell
analysis (Zhang et al., 2020c). The viral mRNA amount expands by
approximately 104-fold in human duodenal enterocytes during the first
day of the infection due to SARS-CoV-2 S-dependent cell tropism and
entry. Additionally, viral RNA and protein levels increase more than
103-fold within the intestinal epithelium at the end of the first day after
contamination (Zang et al., 2020). Since SARS-CoV-2 has a significantly
large capacity to provoke vigorous infection and rapidly replicate in
human enterocytes, the high amounts of viral RNA pass through the
gastrointestinal tract mean that intestinal content is a marker of its
ability to raise infection (Zang et al., 2020). However, presence of
SARS-CoV-2 in faeces is the evidence of the transportation and invasion
of the infectious virions to the gastrointestinal system. For this reason, it
is strongly recommended that real-time reverse-transcriptase poly-
merase chain reaction (rRT-PCR) analysis to investigate the SARS-CoV-
2 in stool should be done routinely in patients with SARS-CoV-2.
Transmission-based measures for SARS-CoV-2 patients in hospitals
should be strictly followed in the case of positive rRT-PCR results of the
stool samples (Xiao et al., 2020).

On the other hand, bile acids and salts that function like detergents
in gut cause glycosylation of virus S protein. Glycan coating of virus
provides reasonable stability and protection from enzymatic damage
and bile salt solubilization (Zhang et al., 2020e). In addition, it is well
known that ACE2 is extensively expressed in bile duct cells. However,
the latest investigations demonstrated that the levels of circulating liver
enzymes representing the impairment of hepatocytes, were increased in
half of COVID-19 cases, while only in some patients elevated alkaline
phosphatase levels were measured. Thus, 2–11 % of cases who suffer
from COVID-19 have hepatic comorbidities (Musa, 2020; Zhang et al.,
2020a). In this context, SARS-CoV-2 binds to the ACE2 receptors of bile

Fig. 1. To initiate infections, many CoVs use SiAs, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily
glycosylated mucus layer. Binding to SiAs is required for the enteropathogenicity of CoVs. Interaction with sialoglycoconjugates may help the virus to pass through
the SiA-rich mucus layer that covers the viral target cells in the epithelium of the small intestine. SiAs exist predominantly as sialylglycoconjugates on N- and O-
linked glycoproteins as well as gangliosides in the cell plasma membrane. The concept of a dual recognition of gangliosides and ACE2 by SARS-CoV-2 S protein: While
the RBD binds to the ACE2 receptor, the NTD binds to the ganglioside-rich domain of the plasma membrane. Binding to MGP may allow the virus to stay longer in the
intestine (Abbreviations. ACE2: angiotensin converting enzyme 2; ALT: alanine aminotransferase; AST: aspartate aminotransferase; CoVs: coronaviruses; GGT:
gamma-glutamyl transferase; LDH: lactate dehydrogenase; MGP: mucin-type glycoprotein; NTD: N-terminal domain; RBD: receptor-binding domain; S: spike protein;
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SiAs: sialic acids; TMPRSS2: transmembrane protease, serine 2; TMPRSS4: transmembrane protease,
serine 4).
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duct and might directly cause liver damage (Hoffmann et al., 2020a).
Indeed, findings of the two independent cohorts showed a significant
increase in ACE2 expression in bile duct epithelium (59.7 %) in com-
parison to hepatocytes (2.6 %). SARS-CoV-2 can bind directly to ACE2-
positive bile duct epithelium and it can impair hepatocellular functions.
(Fig. 1) (Chai et al., 2020). Since in some patients with COVID-19, the
gastrointestinal symptoms precede the respiratory illness (D’Amico
et al., 2020; Lin et al., 2020), the small intestinal proteases may en-
hance viral infection by triggering intestinal epithelial cells fusion.
Consequently, gut epithelium might permit the virus to spread to other
systemic organs. For these reasons, it is expected that the pharmaco-
kinetic properties of the drugs intended to be used in gastrointestinal
COVID-19 should be compatible with the mechanism of the disease.

3. Coronavirus receptors

CoVs, in order to readily penetrate into the cells, recognize diverse
and specific cellular receptors and coreceptors, consisting of proteins
and sugar moieties. Currently, four main protein receptors, amino-
peptidase N (APN), ACE2, carcinoembryonic antigen-related cell ad-
hesion molecule 1 (CEACAM1), and dipeptidyl peptidase 4 (DPP4) are
defined for CoVs. While almost all members of α-CoVs interact with
APN as the receptor for infecting host cells, SARS-CoVs, which belong
to β-CoVs group, as mentioned earlier, use ACE2 receptors. In fact,
ACE2 is a type I integral membrane glycoprotein with an N-terminal
extracellular domain, which contains a catalytic site with a coordinated
zinc ion (Delmas et al., 1992; Li et al., 2003; Masters, 2006). SARS-CoV-
2 uses ACE2 as a viral receptor to enter host cells (Wan et al., 2020a,
2020b; Zhou et al., 2020b), and ACE2 is one of the important regulators
of intestinal inflammation (Hashimoto et al., 2012). Because its cell
entry receptor pathway is - extensively expressed in gastrointestinal
epithelial cells, high levels of SARS-CoV-2 RNA have been identified in
faecal samples of infected patients (Wong et al., 2020). By analyzing
single-cell RNA sequencing data, Liang et al. detected that ACE2 was
highly expressed in the small intestine particularly in proximal and
distal enterocytes (Liang et al., 2020) and indeed, live SARS-CoV-2 were
isolated from stools of patients. Furthermore, in 23 % of patients, their
stools were found virus positive, despite their respiratory samples were
negative (Cipriano et al., 2020). In addition to live virus in stool, in-
tense staining of viral nucleocapsid protein of SARS-CoV-2 RNA in the
enterocytes confirm the faecal-oral transmission is an another im-
portant route that should not be ignored for viral spread (Wang et al.,
2020; Xiao et al., 2020). Thus, infection of the gastrointestinal tract
with SARS-CoV-2 results in shedding of virus in the environment and
potentiates the human-to-human transmission (Ding and Liang, 2020).
Virus detection in the stool lasts during the course of disease, as long as
12 days even after the respiratory symptoms disappear. During the
SARs outbreak of the early 2000′s, around 27 % of the patients at the
time suffered from diarrhea and the full-length genome sequence
homology of the COVID-19 infection SARS-CoV-2 is within 79 % of
SARS-CoV. Both share the identical membrane receptor, ACE2 as their
cellular entry point (Donnelly et al., 2003). It is likely therefore, that
the proportion of the cases presenting gastrointestinal symptoms will be
much greater in patients suffering from SARS-CoV-2 infection (de Wit
et al., 2016).

Similar to respiratory mucosa, both ACE2 receptor and plasma
membrane-associated type II transmembrane serine proteases facilitate
viral entry into the enterocytes (Hoffmann et al., 2020b; Matthai et al.,
2020). Thereby, expression of two mucosa-specific serine proteases,
transmembrane protease, serine 2 (TMPRSS2) and TMPRSS4, boost
SARS-CoV-2 S protein fusogenic activity and assist virus penetration
into enterocytes (Zang et al., 2020). Consequently, the successful SARS-
CoV-2 entry into the cell primarily depends on the availability of ACE2,
in addition to the TMPRSS2, which cleaves the S protein of hCoV on the
cell membrane. Both proteases are crucial for fusion and are indis-
pensable to deliver the viral contents into the enterocytes (Hoffmann

et al., 2020b; Zhang et al., 2020b). In brief, TMPRSS2 and homologous
proteases facilitate SARS-CoV breaking into the cell by two distinct
mechanisms. These are ACE2 dissociation that may support the viral
uptake, and SARS-S dissociation, which activates the S protein for
membrane fusion (Fig. 1) (Heurich et al., 2014). In this respect, anti-
viral activities of the serine protease inhibitors could be taken into
account for the treatment of SARS-CoV-2-infected patients (Hoffmann
et al., 2020b; Yamamoto et al., 2016).

Entire typical coronaviral genes are identified among the 14 po-
tential open reading frames (ORFs) that encode the four structural
proteins. These are named as the S glycoprotein, the membrane (M)
protein, the envelope (E) protein, and the nucleocapsid (N) protein
(Oostra et al., 2006).The E protein of SARS-CoV interacts at least with
five proteins of the host. Moreover, SARS-CoV E protein carries a post-
synaptic density protein-95/discs Large/zonula occludens-1 (PDZ) do-
main-binding motif (PBM), that is an essential element of virulence.
SARS-CoVs that do not have E protein PBM are characterized by a di-
minished expression of inflammatory cytokines, and resultant viral at-
tenuation (Jimenez-Guardeño et al., 2014; Teoh et al., 2010). There-
fore, determination of proteins and units that interact with CoV E would
ensure a better understanding for the development of more precise
targeted therapeutic approach. Following the binding to the receptor,
SARS-CoVs fuse their envelope with the membrane of the enterocytes to
release their nucleocapsid into the host cell. All of the CoV S proteins
carry the same S domains. S1, N-terminal domain (NTD) is responsible
for receptor binding, and a S2, C-terminal domain (CTD) is responsible
for fusion (Belouzard et al., 2012). The aminopeptidase N (APN) is a
type II transmembrane protein expressed on the apical domain of epi-
thelial cells of both respiratory, as well as enteric systems (Belouzard
et al., 2012). APN is a Zn2+ dependent protease, and degrades peptides
or proteins with a N-terminal neutral amino acid. Because of the cap-
ability of their S proteins to recognize the specific amino acid variations
in APN, CoVs demonstrate tropism differences (Tusell et al., 2007).
Fusion is activated by sequential dissociation of the S protein at two
distinct sites. The initial dissociation at the S1-S2 boundary facilitates
the second dissociation that is essential for the final fusion activation
(Belouzard et al., 2012; Watanabe et al., 2008). The second dissociation
eventuates directly at the N-terminal of the fusion peptide. Thus, SARS-
CoV can be integrated directly to the cell surface. It is thought that this
mode of virus entry is 102 to 103 times more efficient than the en-
dosomal pathway (Matsuyama et al., 2005). TMPRSS2 and TMPRSS4
are associated with ACE2 receptor. The presence of these proteases in
the extracellular medium is the essential factor of SARS-CoV tropism
(Shulla et al., 2011). Thereby, TMPRSS2 presumably acts as the main
factor in the initial infection and spread of the virus. The fine balance
between the two antagonistic effects on SARS-CoV infection, the
shedding of the receptor and fusion activation, underlines the sig-
nificance of this protease (Guillén et al., 2008, 2005). Furthermore, the
SARS-CoV S protein binds to human ACE2 with a robust affinity. As
stated earlier, the general high sequence homology between SARS-CoV-
2 and SARS-CoV is of course also seen with their S proteins (Zhang
et al., 2020d). Thus, both SARS-CoVs use the same receptor while en-
tering into the enterocytes (Wan et al., 2020a). In view of these find-
ings, it is probable that one course for the passage of SARS-CoV-2 from
respiratory system into the enterocytes of gastrointestinal tract may be
the lung to gut axis (Zhang et al., 2020a).

4. SARS-CoV-2 and sialic acid

SiA is the first defined virus receptor. BetaCoVs recognize O-acety-
lated SiAs and comprise an acetylesterase which acts on the receptors to
destroy them (Matrosovich et al., 2015). The receptor-eliminating en-
zyme, acetylesterase of the β-CoVs allows virus to be liberated from the
infected cell, facilitating penetration into the mucus layer, and pre-
venting aggregate formation (Fig. 1) (Storz et al., 1992; Vlasak et al.,
1988). Besides binding to their specific receptors, α-, β-, and γ-CoVs
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have evolved variant SiA binding activities (Hoffmann et al., 2013). SiA
modifications of the carbon backbone at the C5 position yields four core
molecules: Neu (C5-NH2), Neu5Ac (C5-N-acetyl), Neu5Gc (C5-N-gly-
colyl), and KDN (ketodeoxynonulosonic, C5-hydroxyl). SiAs pre-
dominantly appear as sialylglycoconjugates on N- and O-linked glyco-
proteins, in addition to gangliosides in the cellular plasma membrane
(Varki, 1992). According to the concept of a dual recognition of
gangliosides and ACE2 by SARS-CoV-2 S protein, while the receptor-
binding domain (RBD) binds to the ACE2 receptor, the NTD binds to the
ganglioside-rich domain of the cellular plasma membrane. Interest-
ingly, when two hydroxychloroquine (HCLQ) molecules are bound to a
ganglioside, binding of a SARS-Cov-2 S protein to the same ganglioside
is completely blocked (Fantini et al., 2020b). Following the binding of
RBD in S1 subunit of S protein on the virion to the ACE2 receptor on the
host cell, the heptad repeat1 (HR1) interacts with HR2 domains in S2
subunit of S protein. Thereby, a six-helix bundle fusion core forms.
Thus, virus and host membranes are drawn into close proximity for
fusion and subsequent infection (Bosch et al., 2004). Indeed, the CoV S2
protein seems to be an ideal target for organizing and designing more
universal CoV inhibitors. Potent SARS-CoV HR2 peptide inhibitors bind
to the C-terminal residues of HR2 which are significantly crucial for the
stability of the six-helix bundle (Aydin et al., 2014). As mentioned
above, the S protein has a substantial role in virus entry into the cell.
This protein assists the binding of virions to the host cell. Thereby, the
subsequent fusion of the viral and the target cell membranes actualizes.
The S protein of these viruses is a hemagglutinin-esterase protein and
hence is the main SiA binding protein (Gagneten et al., 1995; Storz
et al., 1992). The initial step of the viral replication cycle is the adhe-
sion of the S viral protein to the cell surface. Besides their protein
membrane receptor, hCoVs bind SiA-containing glycoproteins and
gangliosides that function as the principal binding elements in gastro-
intestinal tract (Matrosovich et al., 2015). Chloroquine (CLQ) is a po-
tential blocker of the SARS-CoV-2 NTD and S-ganglioside interaction
that becomes the initial step of the viral replication cycle (Fantini et al.,
2020b). The attachment to SiA-containing cell surface structures
eventuates via the receptor-binding domains on the viral S protein. This
binding is achieved by the S glycoprotein in the CoVs (Hoffmann et al.,
2020b; Yan et al., 2020). The interactions of the host ACE2 protein with
SARS-CoV and SARS-CoV-2 are the key events of the contagiousness of
viruses (Li et al., 2003). Dual recognition of SiA-containing gangliosides
and ACE2 by SARS-CoV-2 S protein occurs via two diverse domains that
are readily accessible for distinct types of interactions. Thus, CoVs are
dependent upon gangliosides, sialylated membrane integral elements
that act as attachment cofactors within lipid raft membrane (Li et al.,
2017; Matrosovich et al., 2015; Park et al., 2019). Lipid rafts that are
membrane domains enriched in gangliosides and cholesterol, constitute
a favorable interface for efficiently positioning the viral S protein at the
initiation of the infection (Fantini et al., 2020b). The RBD binds to the
ACE2 receptor, and the NTD binds to the ganglioside-rich domain of the
cellular membrane. Lipid raft deterioration by cholesterol exhaustion
results in a significant decrease in the human SARS-CoV infection
(Glende et al., 2008). CLQ is an interesting chemical structure con-
structed with the integration of cationic nitrogen atoms and aromatic
rings. The properties of both of these components were demonstrated to
function as key factors for the identification of SiAs and gangliosides by
proteins during SARS-CoV-2 infection (Fantini and Yahi, 2010; Yahi
and Fantini, 2014). The World Health Organization (WHO) re-
commended CLQ for malaria chemotherapy either 300 mg for max-
imum 5.5 years/week or 100 mg for 3 years/day of continuous intake
(WHO, 1990). The encouraging outcomes of CLQ in the treatment of
COVID-19 and the low frequency of side effects of this drug in long-
term use offer an application potential for CLQ (100 mg/day) or HCLQ
(300 mg/week) in the mass prophylaxis of people who are likely to
encounter with SARS-CoV-2 (Gendrot et al., 2020; Zhou et al., 2020a).
Zinc enhances intracellular uptake of CLQ (Xue et al., 2014). Un-
fortunately, CLQ did not show efficacy in inhibiting viral replication in

a rodent SARS-CoV model (Barnard et al., 2006). Nevertheless, by
considering its anti-inflammatory properties, CLQ/HCLQ may have
some effect on SARS-CoV, by inhibiting the production of proin-
flammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-6
and interferon (IFN)-γ. Consequently, CLQ/HCLQ may alleviate the
inflammatory reaction raised towards the SARS‐CoV‐2 that is translated
into the potentially deadly cytokine storm (Barnard et al., 2006; Engin
et al., 2020; Mégarbane and Scherrmann, 2020; Savarino et al., 2003).
Both these drugs orally effective and almost completely absorbed from
the gastrointestinal tract with around 75 % bioavailability (McLachlan
et al., 1994). Therefore, maximum drug levels are achieved at around
4–12 h following the oral intake. CLQ is extensively distributed through
all the body (Müller et al., 2011), with significant intracellular se-
questration and a long functional half-life (van den Borne et al., 1997).
Both drugs may be effective choices in gastrointestinal SARS‐CoV‐2
infection. The presence of prolonged faecal shedding even after viral
clearance in the respiratory tract of the COVID-19 patients makes the
use of these two drugs potentially effective for the treatment of patients
and antiviral prophylaxis of the medical personnel dealing with these
patients (Ng and Tilg, 2020). On the other hand, clinical studies also
demonstrated the capability of azithromycin (ATM) to diminish the
viral load. At the same time, ATM interacts with the ganglioside-
binding domain of SARS-CoV-2 S protein. The binding domain is also
shared by ATM and ganglioside monosialotetrahexosylganglioside
(GM1). HCLQ fully occupies the virus binding regions on gangliosides
in the neighborhood of the main CoV receptor, ACE2. In combination
therapy, while ATM is directed against the virus, HCLQ is oriented to
the cellular attachment receptor (Fantini et al., 2020a). CLQ has two
diverse binding domains which are bound to isolated SiAs. The first one
is positioned at the edge of the saccharide moiety of the ganglioside.
The carboxylated group of the SiA of GM1 is directed towards the ca-
tionic groups of CLQ. The chlorine of CLQ binds to the second site at the
ceramide-sugar junction axis (Fantini et al., 2020a). In fact, CLQ and
HCLQ are well suited for SiAs interaction, whether the SiAs are isolated
or bound to gangliosides. The ACE2 receptor is the ganglioside-binding
region on the other cell-attainable domain of the S glycoprotein (Fantini
et al., 2020b). In this case, CLQ inhibits quinone reductase‐2, a struc-
tural neighbour of uridine diphosphate (UDP)‐N‐acetylglucosami-
ne‐2‐epimerases, involved in SiA biosynthesis (Mégarbane and
Scherrmann, 2020). Whereas, HCLQ inhibits ACE2 glycosylation and
SiA biosynthesis, thus, hinders SARS‐CoV‐2 interaction with its target
cell receptor and subsequent virus/host cell membrane fusion (Savarino
et al., 2006). Consequently, CLQ or HCLQ inhibits internalization of the
virus by reducing ligand recognition and preventing the fusion of SARS-
CoV-2 with the host cell. In this process, inhibition of the addition of
SiA moiety to ACE2 and neutralization of the acidic pH of the endosome
is effective (Savarino et al., 2006; Vincent et al., 2005). Although there
is extremely limited evidence of a possible synergy between ATM and
HCLQ, the HCLQ-ATM combination can be recommended at least me-
chanistically as anti–COVID‐19 drug, if administered early enough in
the disease time course (Gbinigie and Frie, 2020; Mégarbane and
Scherrmann, 2020). Nevertheless, the equilibrium problem between the
anticipated synergistic impact and possible risks of cardiotoxicity con-
stitutes a significant safety concern. Despite the well- described me-
chanisms of action of these drugs, some of non-randomized studies have
claimed that the high doses of HCLQ-macrolide combination treatment
have a high mortality rate due to its adverse effects in COVID-19.
Further investigations on combination therapy are recommended in
these studies where dose-response analysis and severity grading of
SARS-CoV-2 infection are ignored (Retraction in: Lancet. 2020 June 5
-Mehra et al., 2020).

Other CoVs have also SiA binding activity. For the members of
group 2a CoVs, SiA moieties on glycoproteins are crucial receptor de-
terminants for the infection (Huang et al., 2015). Like SARS-CoV-2, the
enteric pathogenicity of transmissible gastroenteritis virus, which are
typical virus of the genus α-CoV, arises by binding to SiAs under
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unfavorable environmental conditions (Schwegmann-Wessels et al.,
2011). By interacting with sialo-glycoconjugates, the virus can migrate
through the SiA-rich mucus layer that coats the enterocytes
(Schwegmann-Wessels et al., 2011; Schwegmann-Wessels and Herrler,
2006). Whereas, non-enteropathogenic virus that is lacking a SiA
binding activity cannot bind to a mucin-type glycoprotein in brush
border membranes of enterocytes (Schwegmann-Wessels et al., 2003).
Ample amount of SiA in mucins facilitates the penetration of virus to
the mucus layer and subsequently binding to APN on the surface of the
intestinal epithelial cells. Attachment of sialylated macromolecules to
the virions surface may enhance the structural conservation of trans-
missible gastroenteritis virus (Krempl et al., 1998). It is thought that
this attachment may also protect the virus against the destructive ef-
fects of gut emulsifiers (Krempl et al., 2000).

The β-CoV group contains receptor-destroying enzyme, hemagglu-
tinin esterase (HE), however, the precise role of HE in the course of
coronavirus entry to enterocytes is still vague (Belouzard et al., 2012).
Furthermore, SARS-CoV S2 is durable in a broad range of pH, enabling
it to function efficiently, and fuse into the plasma membrane, and also
into the endosome (Aydin et al., 2014). The CoV S protein-receptor
pairing is a decisive factor of tropism. Binding to mucin-type glyco-
protein (MGP) may ensure the virus remains in prolonged contact with
the intestine and facilitates encountering the APN receptors for in-
itiating intestinal infection (Schwegmann-Wessels et al., 2003). As
noted, the SiA binding activity is also present in that fragment of the S
protein. The availability of a hemagglutinating activity in enteric CoVs
and lack of this ability in respiratory CoVs, exhibits the probability that
the SiA binding activity contributes to the enterotropism of CoV
(Schultze et al., 1996).

In the respiratory system, SiAs are generally fragments of glyco-
proteins and gangliosides. However, the SiA binding activity resides in
the N-terminal portion of the S1 subunit that is related with the en-
teropathogenicity of virus (Schultze et al., 1996). The S protein has a
trimeric structure and this maintains its SiA binding activity in soluble
forms of the protein (Schwegmann-Wessels and Herrler, 2008; Shahwan
et al., 2013). The S protein launches the infection by attaching to the
host cell surface; it further mediates the consecutive fusion between the
viral and target cell membranes. The S protein presents two binding
activities. Binding to aminopeptidase N is essential for virus to trigger
the infection in the host cells (Delmas et al., 1992).

5. Conclusion

The CoV S protein-receptor interaction and pairing is the key de-
terminant of tropism. SiAs have dual functions in gastrointestinal SARS-
CoV-2 infection. By interacting with sialo-glycoconjugates, the SARS-
CoV-2 can move along the intestinal lumen and migrate through the
SiA-rich mucus layer that coats and protects the enterocytes from viral
attack. The RBD binds to the ACE2 receptor, and the NTD interacts and
attaches to the ganglioside-rich domain of the plasma cell membrane.
SiA moieties on glycoproteins are crucial, as well as essential receptor
determinants for the infection. Binding to MGP may permit the virus to
accommodate extended periods in the intestine and can be spread with
stool. In this context, human waste from hospitals is thus currently one
of the main viral contamination threats to the environment in muni-
cipal wastewater, which has not to date been fully appreciated as a
contributor to the persistence of the COVID-19 infection in our local
communities.
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